SQL Meets GenBI: AI-Powered
Dashboards in a Declarative World
Applied AI and Data Meetup, June 2025
Simon Späti
Welcome
▓▓▓ Today's Topic
GenBI - something that is dear to my heart
Why? Because it solves the self-serve BI
challenge I've been trying to solve since
the beginning.
▓▓▓ The ChatGPT Moment for BI
ChatGPT taught us it's possible to ask
complex questions and get reasonable
answers with little effort.
█████████████
About Me
▓▓▓ Simon Späti, web: (https://ssp.sh)![]()
• 20 years working with data
• Started with BI in 2003 (Oracle, SQL Server)
• Transitioned to data engineering 10 years
later
• Writing on #dataengineering since 2015 at
ssp.sh
• Working for myself since 2024
█████████████████
Why GenBI?
▓▓▓ The Long-Standing Challenge
▍ Self-serve BI - something I've heard about and been trying to solve
▍ since the beginning
█████████████████████
Why GenBI?
▓▓▓ The Long-Standing Challenge
▍ Self-serve BI - something I've heard about and been trying to solve
▍ since the beginning
▓▓▓ A little bit of History
• 20 years ago: We moved from pixel-perfect to interactive dashboards
• 15 years ago: Drag-and-drop tools promised self-service through
cloud first
• 7 years ago: dbt where analysts could create SQL metrics &
transformations
• Today: The full AI boom helps us improve the workflow
█████████████████████████
Why GenBI?
▓▓▓ The Long-Standing Challenge
▍ Self-serve BI - something I've heard about and been trying to solve
▍ since the beginning
▓▓▓ A little bit of History
• 20 years ago: We moved from pixel-perfect to interactive dashboards
• 15 years ago: Drag-and-drop tools promised self-service through
cloud first
• 7 years ago: dbt where analysts could create SQL metrics &
transformations
• Today: The full AI boom helps us improve the workflow
▓▓▓ Why Now?
• BI is in the best spot for using LLMs and AI power
• BI provides the otherwise missing domain knowledge
• LLMs and MCP can empower non-technical business experts
█████████████████████████████
What is GenBI? (and Self-Serve BI?)
Changes the way people interact with data by combining the power of
natural language and analytics.
▓▓▓ Before GenBI: Linear & Manual ▓▓▓ With GenBI: Iterative &
AI-Powered Workflow:
▒▒▒▒ The key difference: Continuous, iterative human-AI collaboration
█████████████████████████████████
GenBI Examples
Let's see GenBI in action...
█████████████████████████████████████
Create Models/Dashboards with OpenAI
- Rill
▒▒▒▒ Generate with OpenAI (https://rilldata.com/):
Generation of BI artifacts (dashboards, models, data sources), based on
BI-as-Code (YAML)
█████████████████████████████████████████
Presentation: Chat Interface with MCP
- Rill
▒▒▒▒ MCP (https://docs.rilldata.com/explore/mcp):
█████████████████████████████████████████████
Presentation: Chat Interface with MCP
- Rill
▒▒▒▒ MCP (https://docs.rilldata.com/explore/mcp):
██████████████████████████████████████████████████
Use MCP Chat interaction to
live-query OLAP cube
--> Try at llm.clickhouse.com/ (https://llm.clickhouse.com/)
██████████████████████████████████████████████████████
Three Key Components
For GenBI to work effectively, we need three critical components.
▓▓▓ 1. Quality Data → DWH/Organized Lake
▍ No data, no insights
▓▓▓ 2. Speed → OLAP
▍ No speed, no one uses it
▓▓▓ 3. BI-as-Code → Declarative way
▍ Human-AI Interface
██████████████████████████████████████████████████████████
Why Declarative?
▓▓▓ The Language of AI
• LLMs and AI-powered workflows work best with declarative interfaces
• They pick up context around your business.
▓▓▓ Data Modeling Languages
LookML, MDX, MAQL, SQL and many more: A way for humans to describe and
model metrics/KPIs for AI to understand.
The declarative language is usually:
• YAML - for configuration & artifacts (dashboards)
• SQL - for metrics and business logic
██████████████████████████████████████████████████████████████
Why Declarative?
▓▓▓ The Language of AI
• LLMs and AI-powered workflows work best with declarative interfaces
• They pick up context around your business.
▓▓▓ Data Modeling Languages
LookML, MDX, MAQL, SQL and many more: A way for humans to describe and
model metrics/KPIs for AI to understand.
The declarative language is usually:
• YAML - for configuration & artifacts (dashboards)
• SQL - for metrics and business logic
——————————————————————————————————————————————————————————————————————————
██ > Think of it as the common language between humans and AI.
██████████████████████████████████████████████████████████████████
The Developer Experience
▓▓▓ GUI Approach ▓▓▓ Code-First Approach
• Initial: many minutes • Initial: minutes
▓▓▓ GenBI Approach
• Seconds to generate
██████████████████████████████████████████████████████████████████████
The Developer Experience
▓▓▓ GUI Approach ▓▓▓ Code-First Approach
• Initial: many minutes • Initial: minutes
▓▓▓ GenBI Approach
• Seconds to generate
⚠️ Humans are still crutial to steer and adjust.
██████████████████████████████████████████████████████████████████████████
Faster Iterations; and Bridging Gaps
▓▓▓ Improving the BI Workflow with..
• BI as the core driver of domain knowledge
• Dashboards and Chat interfaces as the presentation layer
• More context for LLMs and MCP that help us humans to iterate much
faster, and easier
██████████████████████████████████████████████████████████████████████████████
Faster Iterations; and Bridging Gaps
▓▓▓ Improving the BI Workflow with..
• BI as the core driver of domain knowledge
• Dashboards and Chat interfaces as the presentation layer
• More context for LLMs and MCP that help us humans to iterate much
faster, and easier
▓▓▓ Wrapping up...
• GenBI bridges 20 year gap - LLMs enable self-serve BI
• MCPs provide the missing piece on top of LLMs for plug-and-play AI
integration
• BI's semantic business layer provides the context it needs to
understand your business
• Time-to-insight goes from days to minutes, especially for
non-technical users
██████████████████████████████████████████████████████████████████████████████████
Faster Iterations; and Bridging Gaps
▓▓▓ Improving the BI Workflow with..
• BI as the core driver of domain knowledge
• Dashboards and Chat interfaces as the presentation layer
• More context for LLMs and MCP that help us humans to iterate much
faster, and easier
▓▓▓ Wrapping up...
• GenBI bridges 20 year gap - LLMs enable self-serve BI
• MCPs provide the missing piece on top of LLMs for plug-and-play AI
integration
• BI's semantic business layer provides the context it needs to
understand your business
• Time-to-insight goes from days to minutes, especially for
non-technical users
And Finally:
██ > Self-Serve BI achieved in 2025?!
██████████████████████████████████████████████████████████████████████████████████████
Want to Know More?
▓▓▓ Resources
▍ 📈 Slides: Slides (https://ssp.sh/slides)
▍ 📝 My Full Article: BI-as-Code and the New Era of GenBI (
▍ https://www.rilldata.com/blog/bi-as-code-and-the-new-era-of-genbi)
GenBI Examples:
• GenBI: Blog (https://rilldata.com/) and MCP Rill: Docs (
https://docs.rilldata.com/explore/mcp)
• Chat-MCP with ClickHouse: Application (https://llm.clickhouse.com/)
• AI Use-Case with MCP: SQL and DuckDB/MotherDuck: Blog (
https:/motherduck.com/blog/open-lakehouse-stack-duckdb-table-formats
#appendix)
• GenBI with Cursor: Demo YT (
https://www.youtube.com/watch?v=Th5Krj14DCI)
Related:
• Declarative Data Stack: Blog (
https://www.ssp.sh/blog/rise-of-declarative-data-stack/)
• And Remember: "Everything becomes BI"; the interface to the
business. Benn Stancil (
https://benn.substack.com/p/no-really-everything-becomes-bi)
——————————————————————————————————————————————————————————————————————————
Slides made with Presenterm (https://github.com/mfontanini/presenterm/).
██████████████████████████████████████████████████████████████████████████████████████████
Thank You!
▓▓▓ Questions?
SQL Meets GenBI: AI-Powered Dashboards in a Declarative World
——————————————————————————————————————————————————————————————————————————
The future of BI - declarative, contextual, and AI-powered.
GenBI is reducing manual work, enabling faster iterations, and expanding
BI creation.
██████████████████████████████████████████████████████████████████████████████████████████